
Delayed Open Source Publication:
A Survey of Historical and

Current Practices

Seth Schoen, James Vasile, Karl Fogel

Foreword

This research offers a number of important findings, including that delaying the
release of freedoms to software users dates back to the GNU project and continues
today.

Companies have experimented with various business models to keep exclusive
rights for a limited duration. This research suggests that this strategy has
been employed as a way to control and monetize software before eventually
transitioning to an OSI Approved License®.

Richard Stallman’s acceptance of a compromise, where he used an older version of
Aladdin Ghostscript for the GNU system to ensure full freedoms, underscores the
complexities and compromises since the early days of the Open Source movement.

Interestingly, the pioneers of the delayed Open Source approach have since shifted
tactics, offering their software to users with two licensing options at the same time:
Strong copyleft or a different contractual agreement. The delayed Open Source
practice by companies in the cloud and software-as-a-service (SaaS) space has
rekindled this debate, ignoring the historic examples.

This survey is a starting point, raising new questions starting from why is the
AGPLv3 the only license trying to apply copyleft to the SaaS model. The OSI is
grateful for Sentry’s donation that allowed us to shed new light on this business
practice. We look forward to dedicating more research in support of companies
doing business with Open Source.

Stefano Maffulli
Executive Director - Open Source Initiative

3Delayed Open Source Publication

Table of Contents

@ 2023 Open Source Initiative
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International license.
(CC-BY-SA, https://creativecommons.org/licenses/by-sa/4.0/)

 1 Executive Summary 4
2 Early History   6
3 Scheduled Relicensing   9

3.1 Proprietary Ramp-up, Eventually Open Source (Pre-Open Source)   9
3.2 Bounty and Sponsorship Delays   10
3.3 The Business Source License (BUSL)   10

3.3.1 Anti-competition as a Motivation   11
3.3.2 Differences From Other Licensing Strategies   13

3.4 Consequences   13
3.5 Other Examples   14

4 “Grace Period” Reciprocal Licensing   17
5 Other Terminology and Practices   18
6 Conclusions   20
7 Future Research Questions   21
8 Acknowledgments   23

Version 1.0 published January 2, 2024

This research was made possible thanks to a donation
from Sentry and OSI’s individual members.

Authors: Seth Schoen, James Vasile, Karl Fogel
Designer: Caroline Henriksen

https://creativecommons.org/licenses/by-sa/4.0/
https://sentry.io/about/

Delayed Open Source Publication (DOSP) is the practice of distributing or publicly deploying
software under a proprietary license at first, then subsequently and in a planned fashion publishing
that software’s source code under an Open Source1 license.2

Software producers have practiced DOSP throughout the history of Open Source software. This
document is a selective survey of that history. It collects and categorizes some examples and tries to
identify patterns and trends.

Based on the samples we know of, we categorize DOSP into three high-level types:

• Unconditional scheduled relicensing.
Planned OSS releases with just a pre-defined time delay. See Section 3.

• Event-driven relicensing.
OSS publication happens regularly, but is driven each time by some expected event, e.g., the
publication of the latest proprietary version, which prompts the previous version to now be
open sourced. Forms of this seem to have been used — albeit loosely in some cases — in the
early history of DOSP (see Section 2) but it appears to be much less common now, with time-
based scheduled relicensing being favored instead.

• Conditional relicensing.
“We’ll publish this as Open Source as soon as we get funding” or “as soon as we find the
right non-profit home for it”, etc. This can include bounty mechanisms, but only if they were
planned — that is, it does not include “buy-outs”.

This type is probably the weakest match for our working definition of DOSP, though it is
technically a match. Unsurprisingly, stated intentions to release under Open Source license
do not always result in that actually happening. Still, when it does happen, it is an instance of
DOSP.

We saw two trends that seem significant:

• The rise of the Business Source License (BUSL).
Use of BUSL is growing rapidly. See Section 3.3.

• Anti-competition terms are becoming more common.
Traditional DOSP was typically about monopolizing direct commercial revenue: the license
would grant most of the permissions necessary for Open Source but, crucially, withold
permission to use the software commercially3 — a restriction that would apply to all
downstream licensees, i.e., to users, not merely to developers.

More recently, however, some DOSP licenses are about preventing any licensee from using
the software in a product or service that competes with certain specific types of software that
are strategically important to the licensor, independently of direct revenue. See Section 3.3.1.

1 Executive Summary

4Delayed Open Source Publication

We emphasize that this document is at best an initial survey and a first-pass analysis. It uncovers
various interesting questions that we must leave for future research. We list some of these in
Section 7; among the most important are:

• Why do organizations so often choose a non-Open Source license (such as the BUSL) and a
DOSP release arrangement when simply publishing under the AGPL4 from the start might, in
many cases, meet their goals well enough?

• When do BUSL-licensed projects have different contribution dynamics than truly Open Source
projects, and when (if ever) do they have similar dynamics?

• When a previously Open Source project is converted to DOSP by its licensor, under what
circumstances does this tend to cause a viable fork to occur?

Just as Open Source gradually shook out into a handful of licenses that are used by the vast majority
of projects, we might now be seeing a convergence toward a recognizable and relatively small set
of DOSP licenses. It is too soon to know for sure if the current options will settle in as the standard.
The list of most-used Open Source licenses has been quite stable for over a decade now, and there
is little reason to think it will change any time soon. With DOSP licenses, though, it is possible we
are still in a period of experimentation. Today’s handful of commonly-used licenses may just be a
precursor to tomorrow’s recognized standard.

EXECUTIVE SUMMARY

1We use the term “Open Source” throughout for compatibility with the Open Source Initiative’s style guide, as
the OSI supported the production of this report. We mean by that term the same thing that people also use
the terms “free software” or “free and open source software” to refer to. While we could use “free software”
interchangeably with “Open Source” — that too would be compatible with OSI’s style guide — for the sake of
consistency we have chosen to just use “Open Source” throughout.

2Note that this definition of DOSP deliberately does not include ad hoc or improvisatory Open Source releases
of formerly proprietary code. For example, the 1998 release of the Netscape Navigator source code, which
through further development eventually became Mozilla Firefox, is not an example of DOSP. This report
examines the history and effects of DOSP practiced as a conscious strategy; the effect of unplanned or
unpredicted Open Source publication is also an interesting topic, but a separate one.

3This causes the license to fail clause 6, “No Discrimination Against Fields of Endeavor”, in the Open Source
Definition (see https://opensource.org/definition-annotated/).

4The Affero General Public License — an Open Source license specifically designed to ensure freedom from
monopoly in network-based application service provision as well as in traditional file-based distribution. See
https://en.wikipedia.org/wiki/Affero_General_Public_License.

NOTES

5Delayed Open Source Publication

https://opensource.org/definition-annotated/
https://en.wikipedia.org/wiki/Affero_General_Public_License

2 Early History

The earliest notable use of DOSP we found is Aladdin GhostScript, which was a relicensing (by its
original author) around 1998 of the originally GPL-licensed GhostScript project under the “Aladdin
Free Public License”. Aladdin’s practice was to publish all new versions of the software under this
license, which did not permit commercial redistribution. Aladdin also published versions of its
software under GPL once they were older than about a year, initially as “GNU Ghostscript” and later
as “GPL Ghostscript”.5

GhostScript’s author, L. Peter Deutsch, described this practice as providing commercial exclusivity
that would help fund continued development of the project.6 This is a commonly cited motivation for
adopting DOSP.

Interestingly, GhostScript’s makers eventually dropped the delay in favor of straight-up proprietary-
relicensing.7 With this approach, they simultaneously release GhostScript under both a proprietary
license and GPL.8 They continue to use this model today, though they have since replaced GPL
with AGPL.9 They determined that their market of commercial, embedded developers were paying
to avoid the GPL and AGPL, and that the time-delay did not significantly change these companies’
incentives to pay for licenses.10

Another early example of DOSP is KDE’s Qt library, which committed to a form of DOSP as a
minimum guarantee. KDE is a desktop environment built using the Qt GUI library.

Over the years, the company that produces Qt, Trolltech, has experimented with a variety of public
collaboration approaches that includes a mix of Open Source and non-Open Source approaches.11

When KDE adopted Qt as its GUI toolkit, “lock-in” concerns about reliance on a codebase owned by
a commercial company led to a series of agreements between a KDE nonprofit and Trolltech. The
original license allowed the KDE Free Qt Foundation to release a version of Qt under BSD license
if Trolltech substantially stopped Qt development for more than a year.12 Moreover, a series of
contracts between KDE’s nonprofit and successive Qt copyright holders include commitments to
release Qt versions under specific Open Source license terms “within a timeframe of not more than
12 months” relative to any proprietary release.13

The Qt licensors did maintain separate “Qt Commercial Edition” and “Qt Open Source Edition”
releases for some time; the latter complied with the licensors’ commitments under the agreements.
We haven’t identified evidence of a significant gap in time or functionality between these releases,
although such gaps may have existed. The agreements established minimal standards for the
protection of KDE, but Qt’s various copyright holders appear to have generally exceeded those
standards in any case. DOSP ended up being a fall-back scenario for two different conditions that
didn’t arise in practice (unreasonably delayed Open Source releases, or complete discontinuation of
upstream development). It appears that Qt licensors usually understood their commercial strategy
as akin to more conventional proprietary relicensing, where proprietary adopters would pay for
the Commercial Edition in order not to incur copyleft obligations. Making generalizations about this
strategy is complicated, as several different commercial entities acquired Qt over time and may have
had somewhat different understandings.

6Delayed Open Source Publication

5See, for example, https://web.archive.org/web/20070816214332/http://pages.cs.wisc.edu/~ghost/doc/
AFPL/6.01/New-user.htm#Overview.

6Specifically, he wrote in the AFPL that this mechanism

attempts to ensure that those who receive, redistribute, and contribute to the licensed Program according
to the Open Source and Free Software philosophies have the right to do so, while retaining for the
developer(s) of the Program the power to make those who use the Program to enhance the value of
commercial products pay for the privilege of doing so.

Larry Rosen also told us, based on his communications with Deutsch, that

Deutsch’s expressed preference for [initial publication under] the AFPL over the GPL arose from what he
saw as a serious “free rider” issue for commercial distribution, initially motivated by fax software vendors
distributing Ghostscript executables with their products and invoking them as black boxes through the
equivalent of ‘exec’, which the GPL allows without bringing the entire product under the GPL.

NOTES

EARLY HISTORY

Today, all of Qt is released simultaneously under LGPL/GPL and proprietary licenses.14

GhostScript and Qt are the two earliest projects we found making documented use of DOSP. They
used them in different ways, but both related in a broad sense to attempts to protect a licensor’s
commercial interests. As we will see from later projects, this is the most common use of DOSP.
However, neither of these projects actively practices DOSP today, although both are still under
active development.

7Delayed Open Source Publication

A more recent example is the Onivim 2 project, which had a proprietary license and also
maintained an 18-month-delayed MIT-licensed version.15

https://web.archive.org/web/20070816214332/http://pages.cs.wisc.edu/~ghost/doc/AFPL/6.01/New-user.htm#Overview
https://web.archive.org/web/20070816214332/http://pages.cs.wisc.edu/~ghost/doc/AFPL/6.01/New-user.htm#Overview

NOTES
7This practice is sometimes also called “dual-licensing”. That term can be ambiguous, however, having
historically also referred to releasing Open Source software under two or more Open Source licenses
simultaneously. Bradley Kuhn pointed this out long ago to one of the authors (Karl Fogel) and suggested the
more accurate term “proprietary relicensing”; we thank him again for it.

8This change was made in 2006. See https://web.archive.org/web/20161003082642/http:// ghostscript.com/
News.html.

9See https://ghostscript.com/licensing/index.html.

10Although these events took place after Deutsch had sold Artifex, Deutsch told Rosen that

Artifex eventually abandoned the AFPL / GPL division, I believe because they found that it was a bit of
complexity that didn’t affect their revenue from commercial licensing. Instead, they simply offered the
choice of either GPL or a straight commercial license. In addition, I believe they offered performance-
enhancing replacements for certain modules that were only available to commercial licensees. (The ones
I remember hearing about were things like halftoning or shading code that used processor-specific SIMD
capabilities.) At the same time, they put quite a bit of energy into identifying and taking legal action against
commercial users who were violating the GPL, of which there were an astoundingly large number. For
the last several years this actually resulted in substantial revenue, from retroactive commercial license
payments and from new commercial license agreements: some offenders started complying with the GPL,
some obtained commercial licenses, and some stopped using the code altogether.

11Some of them might be called “visible source” or “source available”: the source code was, as far as we can tell,
always available, just not always with all the freedoms guaranteed by the Open Source Definition.

12See https://kde.org/community/whatiskde/kdefreeqtfoundation.

13See id., which includes the exact language of the licensors’ contractual commitments; a portion of the historical
context is also described in https://tinf2.vub.ac.be/~dvermeir/manual/KDE20Development-html/ch19lev1sec4.
html.

14The Qt Group states that there is currently one exception where it doesn’t have the right to grant a proprietary
license for a specific module, the Qt WebEngine, which is only available under LGPL v2.1. See https://www.qt.io/
download-open-source.

8Delayed Open Source Publication

15See https://github.com/onivim/oni2/issues/3771, and see also
https://web.archive.org/web/20210929101337/https://github.com/onivim/oni2-mit. All development on the
project ceased in 2021, and it was relicensed under the MIT license at that time.

https://web.archive.org/web/20161003082642/http://%20ghostscript.com/News.html
https://web.archive.org/web/20161003082642/http://%20ghostscript.com/News.html
https://ghostscript.com/licensing/index.html
https://kde.org/community/whatiskde/kdefreeqtfoundation
https://tinf2.vub.ac.be/~dvermeir/manual/KDE20Development-html/ch19lev1sec4.html
https://tinf2.vub.ac.be/~dvermeir/manual/KDE20Development-html/ch19lev1sec4.html
https://www.qt.io/download-open-source
https://www.qt.io/download-open-source
https://github.com/onivim/oni2/issues/3771
https://web.archive.org/web/20210929101337/https://github.com/onivim/oni2-mit

3 Scheduled Relicensing

3.1 Proprietary Ramp-up, Eventually Open Source
(Pre-Open Source)
DOSP is usually adopted as an ongoing commercial strategy. It reserves a window of time for a
company to sell the latest features under proprietary license before they become available to all
under open license.

In addition to this common form of DOSP, we find delayed publication occurs in another notable
form. In this form, projects plan to eventually be fully open but initially operate in a less open
manner. The plan for such projects is to become full-fledged Open Source efforts once the project
has matured or stabilized. This one-time delay at the start of a new project is, to us, different enough
from other DOSP that maybe it should be placed in a whole other category. Still, it is a common form
of time-delay in the Open Source world.

These projects begin development in a proprietary mode. During this pre-open-source period, their
practices might reflect just about any variation of non-Open Source software. They might not publish
any code. Or release their code under non-Open Source license, including by not explicitly specifying
a license. They might only release binaries or release nothing. In short, these projects range from
wholly, traditionally proprietary in nature to public collaborations that stop just short of an Open
Source license.

Usually, these projects explain that they plan to become open, explain why it hasn’t happened yet,
and describe (sometimes vaguely) the conditions that will trigger a relicensing toward Open Source.

There are many possible reasons why a project might start out with some public visibility, whether
of source or binaries, but not initially ship Open Source code. The ones we have observed:

• shame about poor code quality

• concern about security issues that may be apparent in unaudited source code

• initial uncertainty about which license to choose

• a need to procure permissions from other copyright holders

• a desire to establish a community, governance, or a legal entity

Although these scenarios involve an intent to publish something as Open Source in the future, they
are also rather different from the DOSP cases we focus on in the rest of this document. They differ,
for example with regard to whether the delay is desired by the authors, whether it’s predictable to
users, and whether it’s expected to recur. Projects that start out proprietary with a stated plan to
go open eventually are not practicing DOSP as a business model. While one might usefully consider
the question of when to deviate from the principle of “be open from day one”,16 the commercially
interesting tradeoffs are mostly found in projects that opt for an ongoing DOSP strategy.

9Delayed Open Source Publication

3.2 Bounty and Sponsorship Delays
Another model is making individual software features or enhancements available to sponsors first,
with a fixed time delay before making them available to the general public. An example of this is the
North Road SLYR GIS software17, which has a published feature roadmap and releases (and licenses)
its implementation of each feature to sponsors first:

While we fully intend to make the full SLYR plugin open source and freely publish the style/
LYR/MXD conversion tools, we also require financial backing in order to support the significant
time required to completely reverse engineer these file formats and develop quality tools
supporting their use outside of the ESRI software ecosystem. Accordingly, the specifications
and file parsing library will initially be closed source and available to SLYR license holders only.
Exactly six months after we hit the pledged sponsorship levels for each stage of the project
(check the progress below for each stage), we will open-source that component of the code
and update the community version of the plugin.

This strategy was also used by the OPSI project, which created a bounty-like “co-funding”
mechanism, which is still alluded to on the associated company’s website18. Under this model,
customers could sponsor the development of particular features, which would initially be available
to sponsors and later to the public. However, this mechanism appears to have fallen out of use, as
there are no recent co-funding opportunities, and the project currently appears to follow an open
core model with paid subscriptions for proprietary extensions.

3.3 The Business Source License (BUSL)
The Business Source License (BUSL; sometimes “BSL”19) was originally written in 2016 by MariaDB
for its MaxScale project. The current version of BUSL, 1.1, was released in 2017 and first used for
MaxScale 2.1.0.20

BUSL requires a licensor to specify a “Change Date” and a “Change License”. On the Change Date,
which is some time in the future, the license of the covered artifact will change to the Change
License, which is an Open Source license.21

MariaDB’s Change Date for MaxScale is four years after the release of a specific version, and its
Change License is GPLv2.

The Linux Foundation noted that several prominent projects switched away from open-source
licenses from 2018 to 202322. Not all of these adopted DOSP licenses23, but those that did so adopted
BUSL. These included CockroachDB, Couchbase, Terraform, and ArangoDB. The most prominent of
these BUSL adopters was HashiCorp, which wrote

SCHEDULED RELICENSING

10Delayed Open Source Publication

SCHEDULED RELICENSING

BSL 1.1 is a source-available license that allows copying, modification, redistribution, non-
commercial use, and commercial use under specific conditions. With this change we are
following a path similar to other companies in recent years. These companies include
Couchbase, Cockroach Labs, Sentry, and MariaDB, which developed this license in 2013.
Companies including Confluent, MongoDB, Elastic, Redis Labs, and others have also adopted
alternative licenses that include restrictions on commercial usage. In all these cases, the
license enables the commercial sponsor to have more control around commercialization.

This change applied to almost all of the company’s software, including popular software like
HashiCorp Terraform, Vagrant, and Vault.

3.3.1 Anti-competition as a Motivation
Although HashiCorp’s license change attracted the most attention and commentary, the BUSL was
originally written by a database company. Some of the project developers wrote that they wanted to
discourage other companies from competing directly with the developers’ hosted database services,
and that they doubted whether an Open Source license would manage to accomplish this.24

By default, BUSL prohibits uses in “production” before the Change Date. Licensors using the bare
BUSL would thus expect commercial adopters to pay for a separate license permitting commercial
use. However, several licensors add an Additional Use Grant (AUG) under the BUSL to allow for
“production” uses other than those that are considered to compete with the developer’s own
commercial services. For example, ArcticDB provides the following Additional Use Grant25:

You may make use of the Licensed Work under the terms of this License, provided that you
may not use the Licensed Work for a Database Service.

A “Database Service” is a commercial offering that allows third parties (other than your
employees and contractors) to access the functionality of the Licensed Work by creating
tables whose schemas are controlled by such third parties.

It appears that the project thus intends to immediately allow commercial uses, including for public
services, as long as these don’t entail charging money for hosting databases in particular. Several
other BUSL adopters have analogous grants.

The AUG mechanism — including optional free-form text that exempts certain uses from BUSL’s
“production use” restrictions — complicates direct comparison of uses of the BUSL; we have not yet
devised a taxonomy for making these comparisons.

11Delayed Open Source Publication

Below is a table of sixteen well-known projects that now use BUSL, showing their Change Date and
Change Licenses.

Project BUSL Date Change Date Change
License

MaxScale
https://mariadb.com/resources/blog/releasing-bsl-1-1

2017-02-14 release date
+4 years

GPL v2

CockroachDB
https://www.cockroachlabs.com/docs/stable/licensing-faqs#bsl

2019-06-04 release date
+3 years

Apache v2

ZeroTier
https://www.zerotier.com/blog/on-the-gpl-to-bsl-transition

2019-08-28 5th cal. year Apache v2

Sentry26

https://blog.sentry.io/relicensing-sentry
2019-11-06 release date

+3 years
Apache v2

Materialize27

https://materialize.com/docs/license
2020-02-07 ? daily +4 years28 Apache v2

CouchBase
https://www.couchbase.com/blog/couchbase-adopts-bsl-license

2021-03-26 release date
+4 years

Apache v2

Memgraph
https://memgraph.com/blog/memgraph-2-0-release

2021-10-03 ? release date
+4 years

Apache v2

SurrealDB
https://github.com/surrealdb/surrealdb/blob/main/LICENSE

2021-12-14 ? release date
+4 years

Apache v2

DragonflyDB
https://github.com/dragonflydb/dragonfly/blob/main/LICENSE.
md

2022-05-29 release date
+5 years

Apache v2

ReadySet
https://github.com/readysettech/readyset/blob/main/LICENSE

2022-08-03 release date
+4 years

Apache v2

Akka
https://www.lightbend.com/blog/why-we-are-changing-the-
license-for-akka

2022-09-07 release date
+3 years

Apache v2

Codecov
https://about.codecov.io/blog/codecov-is-now-open-source

2023-08-02 release date
+3 years

Apache v2

Terraform (etc.)29

https://www.hashicorp.com/blog/hashicorp-adopts-business-
source-license

2023-08-10 release date
+4 years

MPL 2.0

ArangoDB
https://arangodb.com/2023/10/evolving-arangodbs-licensing-
model-for-a-sustainable-future

2023-10-11 release date
+4 years

Apache v2

ArcticDB
https://github.com/man-group/ArcticDB/blob/master/LICENSE.
txt

always release date
+2 years

Apache v2

evitaDB
https://github.com/FgForrest/evitaDB/blob/dev/LICENSE

always 4th cal.year Apache v2

SCHEDULED RELICENSING

12Delayed Open Source Publication

https://mariadb.com/resources/blog/releasing-bsl-1-1
https://www.cockroachlabs.com/docs/stable/licensing-faqs#bsl
https://www.zerotier.com/blog/on-the-gpl-to-bsl-transition
https://blog.sentry.io/relicensing-sentry
https://materialize.com/docs/license
https://www.couchbase.com/blog/couchbase-adopts-bsl-license
https://memgraph.com/blog/memgraph-2-0-release
https://github.com/surrealdb/surrealdb/blob/main/LICENSE
https://github.com/dragonflydb/dragonfly/blob/main/LICENSE.md
https://github.com/dragonflydb/dragonfly/blob/main/LICENSE.md
https://github.com/readysettech/readyset/blob/main/LICENSE
https://www.lightbend.com/blog/why-we-are-changing-the-license-for-akka
https://www.lightbend.com/blog/why-we-are-changing-the-license-for-akka
https://about.codecov.io/blog/codecov-is-now-open-source
https://www.hashicorp.com/blog/hashicorp-adopts-business-source-license
https://www.hashicorp.com/blog/hashicorp-adopts-business-source-license
https://arangodb.com/2023/10/evolving-arangodbs-licensing-model-for-a-sustainable-future
https://arangodb.com/2023/10/evolving-arangodbs-licensing-model-for-a-sustainable-future
https://github.com/man-group/ArcticDB/blob/master/LICENSE.txt
https://github.com/man-group/ArcticDB/blob/master/LICENSE.txt
https://github.com/FgForrest/evitaDB/blob/dev/LICENSE

3.3.2 Differences From Other Licensing Strategies
MariaDB describes some of the differences between BUSL and other commonly-used licensing
strategies as follows:30

Q: How is the BSL different from Open Core?

A: Open core offers some code under Open Source terms, but non-core code is not under
Open Source terms, is not available in source form, cannot be modified and compiled, cannot
be contributed to, and will never be Open Source. By using Open Core software, like with
closed source code, you are locked to one vendor. With BSL, as compared to Open Core,
the source code is available from the start, can be modified and compiled, contributions are
encouraged, the product will become fully Open Source after a period of time and remains
free for non-production use. The importance of the eventual Open Source is that users are
free from vendor lock-in. If the vendor decides to stop contributing to the code, users have
open access and can modify, update and extend as needed.

Q: How is the BSL different from dual GPL/commercial licensing?

A: When using dual licensing with GPL, companies must pay for a commercial license to use
the software with their closed source code. With BSL, the companies are only paying for the
software if they want to make production use of the software. From a vendor perspective, GPL
dual licensing only works for infrastructure products that other companies want to deeply
embed in their product. BSL works for any kind of software product.

This is echoed in statements by several BUSL adopters that they sought a way to make downstream
commercial users who did not redistribute derived works pay for the use of their software (typically
in cloud environments), or wanted to prevent downstream commercial users from directly
competing with the initial developer’s own service offerings.

We do not know why MySQL’s FAQ item mentions only GPL and not AGPL, nor whether those other
BUSL adopters considered AGPL.

3.4 Consequences
Projects that change from an open-source license to a delayed open-source license have attracted
criticism, with some people pledging to switch to other projects or even to maintain competitive
forks of the prior open-source versions.

SCHEDULED RELICENSING

13Delayed Open Source Publication

BUSL is notionally designed to apply to specific software releases, so that a Change Date applies to
a particular version of a code base. That means that, for a project with an ongoing DOSP practice,
BUSL is meant to be re-applied periodically with updated details. The majority of projects we've
seen have not yet demonstrated how they'll handle this process on an ongoing basis. Most don't
have a clearly-visible and systematic way to apply BUSL updates to ongoing development, although
one project (Materialize) automatically updates its BUSL grant every day in order to keep the
Change Date at a fixed point in the future. For some projects, it is unclear at first glance exactly
which version or versions of the code base the BUSL grant is meant to apply to. The Change Date
concept may be complicated by the fact that not all contemporary software projects have a reliable
schedule of discrete “release” events.

As far as we can tell, most other forks of recently-reproprietized software have not attracted the
same levels of attention, participation, or adoption. However, we have not done an extensive survey
on this question and welcome further research.

It could be harder for projects under non-Open Source terms to receive or accept outside
contributions, both because people may be less motivated to make them and because the
licensing status of the resulting contributions is more complicated. However, some projects that
have switched to BUSL (or other licenses) continue to accept outside contributions subject to
a contributor license agreement (“CLA”), which grants certain rights to the original developer.
HashiCorp, for example, has a CLA for its projects32, and a bot that checks whether the authors of
pull requests have signed it, so that their contributions will not be incorporated into the codebase
until and unless they do so. The company does continue to receive some outside code contributions
to its BUSL-licensed projects, including Terraform. HashiCorp’s CLA is “non-exclusive”; an outside
contributor could conceivably continue to contribute the same patches to a HashiCorp BUSL project
and a non-HashiCorp fork of the same project, assuming that the codebases haven’t diverged too far
over time to make this practical.

3.5 Other Examples
The Child Mind Institute created its own Delayed Open Source Attribution License (DOSA), which
has a three-year period during which only noncommercial uses are permitted, for its MindLogger
software.33 However, as of 2023, MindLogger and other projects from the Child Mind Institute are
licensed under the CPAL Open Source license, with no associated delay.

The Poké Classic Framework has a conditional license which limits uses of the code but which
converts to AGPL if the original developer ceases to operate a service based on the code.34

Roughly contemporaneously with MariaDB’s development of BUSL, Ben Boyter proposed a “GPL
time bomb” (later renamed to simply “eventually open”) that is conceptually similar to BUSL with
an AUG specifying a limited number of users within an organization.35 This approach was used for
Boyter’s “searchcode-server” project36, but no new development has taken place on this codebase
since 2020, so the whole project is apparently now licensed under GPL v3.

In November 2023, Sentry published its own “Functional Source License” (FSL)37 and relicensed
its own previously BUSL-licensed software under it.38 The FSL prohibits, during a period of two
years, uses of covered software to provide services that “compete” with the original developer’s
commercial service offerings. Other uses are generally permitted. Following this two-year period, the
software is licensed under MIT or Apache terms, without the competition restriction.39

SCHEDULED RELICENSING

14Delayed Open Source Publication

The most consequential such effort appears to be OpenTofu, a fork of HashiCorp’s Terraform
announced soon after Terraform was relicensed under BUSL.31 OpenTofu has announced several
corporate sponsorships, apparently plans to hire multiple full-time developers, and has organized
itself as a project of the Linux Foundation. The fork’s creators complained that the prior Open
Source license of Terraform had encouraged people to develop professional expertise with the
software and to use it as a part of their infrastructure — in essence, that HashiCorp performed
a bait-and-switch by moving from Open Source licensing to BUSL. They also noted concerns
about whether Terraform users could be confident about whether their particular uses would be
considered commercially competitive with HashiCorp.

SCHEDULED RELICENSING

Several cloud-oriented software projects that switched away from Open Source licensing in the past
few years also adopted license terms with non-competition clauses (but permanently, without any
time limits). Conversely, several projects that adopted BUSL included AUGs that allow commercial
uses so long as these aren’t charging third parties for the service of hosting instances of the
software, or so long as they don’t otherwise compete with the original developer’s own service
offerings. The FSL codifies a version of this policy in the main license itself, rather than adding it as
an optional additional permission.

16See http://archive.civiccommons.org/2011/01/be-open-from-day-one/index.html for more about this principle.

17See https://north-road.com/slyr/.

18See https://web.archive.org/web/20220216132657/https://www.uib.de/en/opsi-cofunding/cofunding/.

19Most adopters of this license refer to it as “BSL”, but this acronym was previously used for the Boost Software
License. The SPDX license identifier for the Business Source License is “BUSL” (see https://spdx.org/licenses/ for
the full SPDX list).

20See https://mariadb.com/resources/blog/releasing-bsl-1-1/.

21Specifically, the Change License must be either GPL 2.0 or else a license that is compatible with GPL 2.0 or a
later version.

22See https://www.linuxfoundation.org/blog/how-open-source-foundations-protect-the-licensing-integrity-of-
open-source-projects.

NOTES

15Delayed Open Source Publication

BUSL expressly permits certain parameters to be set by each individual adopter (including arbitrary
free-form license text in AUGs, so long as that text grants additional permissions rather than
removing permissions). Sentry disapproved of the resulting proliferation of variant terms and
differently-phrased AUGs; it stated that, from the licensee’s point of view, each BUSL instance is
actually a substantively different license. Accordingly, the FSL roughly follows the BUSL’s approach,
while freezing a particular set of terms.40

http://archive.civiccommons.org/2011/01/be-open-from-day-one/index.html
https://north-road.com/slyr/
https://web.archive.org/web/20220216132657/https://www.uib.de/en/opsi-cofunding/cofunding/
https://spdx.org/licenses/
https://mariadb.com/resources/blog/releasing-bsl-1-1/
https://www.linuxfoundation.org/blog/how-open-source-foundations-protect-the-licensing-integrity-of-open-source-projects
https://www.linuxfoundation.org/blog/how-open-source-foundations-protect-the-licensing-integrity-of-open-source-projects

NOTES
23The trend identified by the Linux Foundation began in late 2018, with two major database projects, Redis and
MongoDB, changing their licenses. Both eventually ended up adopting the Server-Side Public License (SSPL).
SSPL was proposed as an Open Source license, but was not ultimately accepted as Open Source by OSI’s license
review process. Some proponents of this license continue to argue that it meets criteria to be considered a
form of free and open source licensing.

24It’s interesting to note that the majority of the projects we’ve identified that relicensed under BUSL are
database systems. It’s possible that there was a degree of “social contagion” as database developers observed
several of their peers relicensing away from Open Source at roughly the same time, either to BUSL or to other
licenses that restrict licensees from operating commercial services. As noted above, database developers were
also responsible for several other relicensing decisions starting in 2018.

25This same text is also used by several other projects, and we have not determined which project originated it.
There are also other variants with similar effect.

26Sentry subsequently relicensed under its own “Functional Source License”; see below for further discussion.

27Not to be confused with the Materialize CSS project, which is released under the MIT license.

28Differently from other BUSL-licensed projects, Materialize uses a bot to update the Change Date every day
(not just on the occasion of release events), so that it always reflects a date exactly four years after the present
date.

29“HashiCorp Terraform, Packer, Vault, Boundary, Consul, Nomad, Waypoint, and Vagrant” are identified as
relicensed by https://www.hashicorp.com/license-faq.

30The quotation is from https://mariadb.com/bsl-faq-mariadb/.

31See https://opentofu.org/.

32See, for example, https://cla.hashicorp.com/hashicorp/terraform. Note that HashiCorp did previously have a
CLA in place for outside contributions, since at least 2019.

33The developers even announced this in a journal article announcing the development of the software. See
Arno Klein et al., “Remote Digital Psychiatry for Mobile Mental Health Assessment and Therapy: MindLogger
Platform Development Study” (2021), available at https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC8663601/; for
the license text, see https://github.com/ChildMindInstitute/DOSA-license.

34See https://github.com/mm201/pkmn-classic-framework.

35See https://boyter.org/2016/08/gpl-time-bomb-interesting-approach-foss-licensing/.

36See https://www.searchcode.com/.

37See https://fsl.software/.

38See Sentry’s announcement and discussion at https://blog.sentry.io/introducing-the-functional-source-license-
freedom-without-free-riding/.

39FSL exists in exactly two variants, one which converts to the MIT license after two years, and one which
converts to the Apache 2.0 license after two years.

40A similar problem of license proliferation was identified years ago among Open Source licenses; see https://
opensource.org/proliferation/ and https://en.wikipedia.org/wiki/License_proliferation for more context.

16Delayed Open Source Publication

https://www.hashicorp.com/license-faq
https://mariadb.com/bsl-faq-mariadb/
https://opentofu.org/
https://cla.hashicorp.com/hashicorp/terraform
https://www.ncbi.nlm.nih.gov/pmc/articles/%20PMC8663601/
https://github.com/ChildMindInstitute/DOSA-license
https://github.com/mm201/pkmn-classic-framework
https://boyter.org/2016/08/gpl-time-bomb-interesting-approach-foss-licensing/
https://www.searchcode.com/
https://fsl.software/
https://blog.sentry.io/introducing-the-functional-source-license-freedom-without-free-riding/
https://blog.sentry.io/introducing-the-functional-source-license-freedom-without-free-riding/
https://opensource.org/proliferation/
https://opensource.org/proliferation/
https://en.wikipedia.org/wiki/License_proliferation

4 “Grace Period” Reciprocal Licensing

One licensing practice often described as related to DOSP is implemented in the Bootstrap Open
Source License (BOSL), previously called the Transitive Grace Period Public License (TGPPL). This
license was mainly devised by Zooko Wilcox-O’Hearn.41

It is worth pointing out that the BOSL has no connection to the Bootstrap web framework project,
which is under the MIT license. Both projects independently use the term “bootstrap” to refer to the
concept of bootstrapping.42

Instead of making an initially proprietary license grant that later transforms into an open-source
license, the BOSL makes an initially non-reciprocal (BSD-style) license grant that later transforms
into a reciprocal (GPL-style) license. This is intended to allow downstream code reuse in proprietary
software projects, but only for a limited time, something Wilcox-O’Hearn characterized as a
compromise between non-copyleft and copyleft Open Source licensing models.43

Since both the start and end-state licenses of the BOSL are themselves Open Source, we do not
regard the BOSL as a form of delayed open-source publication as defined by this report. Rather, it
seems to be an unconventional form of Open Source publication with time-varying Open Source
terms. While the BOSL has not been approved by the Open Source Initiative, it appears to us to be
compatible with the Open Source Definition, and — unlike BUSL, for instance — is claimed by its
authors to be a form of Open Source licensing.

One way to view the distinction between delayed open-source licensing and grace period reciprocal
licensing is that the former aims to compromise between proprietary and Open Source licensing,
where the latter aims to compromise between non-reciprocal and reciprocal licensing — in both
cases by modifying the license terms after a delay.

41It implements a strategy previously proposed by Ted Ts’o, at https://thunk.org/tytso/TPL.html.

42Furthermore, neither has any connection to the “Boost” project nor to the Boost Software License, though
when reading quickly it is easy to make a transposition mistake. Not that this ever happened to any of this
report’s authors.

43See, for example, the presentation at https://tahoe-lafs.org/~zooko/tgppl.pdf.

NOTES

17Delayed Open Source Publication

https://thunk.org/tytso/TPL.html
https://tahoe-lafs.org/~zooko/tgppl.pdf

5 Other Terminology and Practices

We’ve encountered a number of other terms that can describe DOSP or the licensing mechanisms
used to implement it.

• Eventual (open) source; scheduled licensing.
Lawrence Rosen’s book “Open Source Licensing: Software Freedom and Intellectual Property
Law” refers to “eventual source” or “eventually open source” software, giving the example of
Aladdin GhostScript. He also calls this “scheduled licensing”.

• Springing licenses.
A research report from Creative Commons refers to “springing licenses” (licenses that grant
additional permissions after a period of time, or when some other condition has been met).
Creative Commons was mainly interested in the possibility of developing licenses that would
grant additional permissions over time, after a period of greater exclusivity.44

• Scheduled relicensing.
Kyle E. Mitchell refers to “scheduled relicensing” in “A Short, Simple Template for Scheduled
Relicensing”.45

One can also distinguish between a public pledge to relicense on a schedule (as GhostScript did) and
a license document whose text includes date or other restrictions. In the former case, the delayed
release is implemented by human beings (actively making a new software release including new
license text); in the latter case, it is automatic.

We do not consider “unplanned” Open Source releases to be examples of DOSP. There are a number
of high-profile cases of proprietary projects that were retroactively relicensed as Open Source as a
result of a one-off decision. Where developers originally had no announced plan or intention to do
this, we think this is best considered a separate phenomenon, not a “delayed” release.

Many people also mentioned the custom among some video game developers of releasing code
(though usually not assets such as graphics and sound) from proprietary video games that are no
longer commercially important. This is a relatively widespread practice, with Wikipedia identifying
dozens of instances.46 The released game code is most often licensed under an established Open
Source license.

Some companies like id Software have made such releases for multiple video game generations.
While many of these developers apparently had a general intention to make their games Open
Source, in whole or in part, at some point in the future, there was usually no public commitment to
do so on any particular schedule or under any particular circumstances. This practice is thus not a
core example of DOSP.

A “delayed open access” model, applied to research articles, has become popular for academic
journals as a compromise between more restrictive journal licensing and open-access publishing.47

18Delayed Open Source Publication

44See “Creative Commons Final Report: On the Viability and Development of Springing Licenses”
https://creativecommons.org/wp-content/uploads/2018/07/Springing-licenses-FINAL.pdf.

45See https://writing.kemitchell.com/2023/10/24/Scheduled-Relicensing.

46Wikipedia lists these examples at https://en.wikipedia.org/wiki/List_of_commercial_video_games_with_later_
released_source

47See https://en.wikipedia.org/wiki/Delayed_open-access_journal.

NOTES

OTHER TERMINOLOGY AND PRACTICES

As of November 2023, Wikipedia identifies by name 108 journals that currently follow some form of
this model, but cites a 2013 study that reportedly reviewed 492 journals with such a policy. In this
context, journals may apply an “embargo period” to create an incentive for some journal users to
pay for subscriptions or article access in order to read recent research. The license terms applied at
the expiration of these embargo periods permit the public to read articles at no charge, but may or
may not be equivalent to Open Source licensing.

19Delayed Open Source Publication

https://creativecommons.org/wp-content/uploads/2018/07/Springing-licenses-FINAL.pdf
https://writing.kemitchell.com/2023/10/24/Scheduled-Relicensing
https://en.wikipedia.org/wiki/List_of_commercial_video_games_with_later_released_source
https://en.wikipedia.org/wiki/List_of_commercial_video_games_with_later_released_source
https://en.wikipedia.org/wiki/Delayed_open-access_journal

6 Conclusions

DOSP has been in use since the early days of Open Source.48 Companies (it’s always companies) tend
to use it to preserve commercial advantage while attempting to keep as many of the advantages of
Open Source as they can. To what extent and in what ways they succeed in this attempt is not yet
entirely clear to us, and some of the questions in Section 7 are meant to elucidate this. We suspect
that as the delay increases, the benefits of Open Source decrease. Exploring the tradeoff between
those benefits and the period of exclusive exploitation might merit future research.

From our research for this report, and from our conversations with Open Source projects and with
our clients over the years, we see some evidence that DOSP is most likely to achieve the licensor’s
goals for fast-moving, cutting-edge software, where access to the latest features is commercially
significant. For software whose year-old versions are, for the typical user, suitable replacements for
the latest proprietary versions, the market segmentation offered by DOSP weakens or disappears.
Those cases essentially collapse down to a proprietary-licensing scheme with proprietary and A/GPL
options.

By far the most important conclusion we draw from our research is that there has been a lot more
experimentation and variety in DOSP than we realized — more projects have tried it than we knew,
and have tried it in far more varying ways than we knew. Although there seems to be a slight trend
towards convergence recently, at least in terms of DOSP license texts, there is no guarantee that this
trend will continue, and in any case the same licensing terms will often lead to different outcomes
for different projects.

This report should be viewed as a starting point. We strongly hope that qualified researchers will
find opportunities to pursue some of the questions suggested in Section 7, and that in doing so they
will discern patterns that lead them to even more important questions that we haven’t thought of.

48Some of that period occurred before the term “Open Source” was coined in the context of software licensing;
the term “free software” was the most commonly used term for this kind of licensing then.

NOTES

20Delayed Open Source Publication

7 Future Research Questions

• AGPL versus DOSP licensing.
The GNU Affero General Public License (AGPL)49 arguably aims to address some of the same
concerns as the BUSL or the FSL — particularly concerns about some forms of free-riding
by downstream adopters. Instead of forbidding commercial (or competitive) uses, the AGPL
imposes a copyleft-like requirement to publicly disclose and publicly license the source code
of modifications, whenever those modifications are used to operate publicly-accessible
services.

The authors of this report have observed debates about the relative merits of the AGPL
and BUSL. Interestingly, proponents of each license often agreed that both licenses might,
in principle, address similar concerns about companies adopting an Open Source code
base — sometimes in direct competition with the original developer’s services — without
rewarding its original developer either with money or with code contributions.50 However, the
proponents didn’t agree about which license better responds to this scenario; in at least some
cases, that may imply a more basic disagreement about values and whether Open Source
licensing is intrinsically preferable.

Did any BUSL adopters seriously consider adopting AGPL? If not, why not? If so, why did they
end up preferring BUSL’s approach?

• Effects on outside contributions.
How much are outside contributions affected by using (or switching to) a DOSP model
rather than an Open Source license? Can any contribution trends be clearly and confidently
attributed to relicensing?

• Taxonomy of BUSL Additional Use Grants.
The BUSL default is to prohibit production use, but most adopters of BUSL have used AUG
clauses that grant permission for production use that doesn’t compete commercially with the
software developers’ own business, or concretely that doesn’t involve charging for access to a
hosted instance of the software.

How similar are the different formulations of this notion? Are there any other permissions
that appear in practice in BUSL AUG clauses beyond the notion of not competing with services
run by or licensed by the upstream developer? Is there a significant minority of BUSL adopters
that aim to restrict (and sell licenses for) “production” use more generally?

• Relicensing after initial Open Source publication.
Is it a conscious strategy — or at least a conspicuous option — to start out a new project
under a purely Open Source license in order to garner interest and mindshare, and then
subsequently relicense under a DOSP license? Some of HashiCorp’s critics noted that the
company had given adopters incentives to become expert in, or otherwise reliant upon, the
company’s software while it was under an Open Source license, and then tried to benefit from
that familiarity and adoption by changing the license terms in the future.

21Delayed Open Source Publication

FUTURE RESEARCH QUESTIONS

If some of the most popular DOSP-relicensed projects had started out under DOSP rather
than Open Source terms from the outset, would they have attracted the same level of interest
and adoption?

• Why has a fork of Terraform attracted so many contributions and so much interest
compared to forks of other projects?
It’s too early to say whether the OpenTofu project will broadly outcompete Terraform among
various audiences, but it’s clear that this fork started off with a bang, immediately garnering
substantial interest, sponsorships and financial commitments, and endorsements from
various companies and developers. However, Open Source forks of other HashiCorp projects
are comparatively stagnant and underpublicized. Similarly, other BUSL relicensing events
did not seem to result in highly active forks (although some may have increased interest in
existing Open Source competitors to the relicensed projects).

What’s special about the OpenTofu effort, or about Terraform or its community, that could
account for these differences? Did Terraform’s market share in its niche play a large role? Was
Terraform particularly indispensable for its users in comparison to some other relicensed
projects? And can answers to these questions about OpenTofu and Terraform be applied to
other projects that have undergone similar relicensing schisms?

49See https://www.gnu.org/licenses/agpl-3.0.html.

50Critics of both licenses have similarly argued that it might be hard to tell exactly which activities related to
online service provision are meant to be “caught”, in comparison to non-copyleft licenses.

NOTES

22Delayed Open Source Publication

https://www.gnu.org/licenses/agpl-3.0.html

8 Acknowledgments

This research was made possible thanks to a donation from
Sentry and OSI’s individual members.

The authors are grateful to the Open Source Initiative for giving us the opportunity
to explore this topic and to make, we hope, a small contribution to the future health
of Open Source by analyzing industry trends likely to affect it.

Many people responded to our call for examples. They always accompanied their
submissions with historical context, and often with thoughtful analysis as well. We
thank them all sincerely; this report would not have been possible without their
help. We list them here in no particular order (in fact, in mechanically randomized
order): Matija Šuklje, AntiCompositeNumber [sic], Simon Phipps, Damiano Verzulli,
Josh Berkus, Marcin Koziej, Alex Scammon, Thomas Sandmann, Royce Williams,
Ross Mounce, Nick Vidal, Stuart D. Gathman, Mark Chapman, Samuel Tardieu,
Chad Whitacre, Johann Schöpfer, Abby Kearns, André Wolski, Heather Meeker, Neil
Carpenter, Sam Ramji, Anthony Nowocien, Stefano Maffulli, and Jesse Bickel.

The authors are solely responsible for the contents of this report, including but not
limited to any errors.

Disclaimer
The authors have not been influenced by Sentry nor by the Open Source Initiative in our choice
of examples, our choice of questions, our analysis, or our conclusions.

23Delayed Open Source Publication

https://sentry.io/about/

Author Biographies

Seth Schoen is an independent consultant in San Francisco.
He was the first Staff Technologist at the Electronic Frontier
Foundation and was a part of the team that created the Let's
Encrypt certificate authority. He has a long-time interest in
copyright and licensing issues and has published research in
computer security, as well as testifying before several courts
and government agencies.

24Delayed Open Source Publication

James Vasile is a founding partner at Open Tech Strategies.
Previously, he was founding director of the Open Internet
Tools Project, a Senior Fellow at the Software Freedom Law
Center, and Director of the Freedom Box Foundation.
James serves on the governing or advisory boards of
Horizons, Brave New Software, The Electronic Frontier
Foundation, and the New York Civil Liberties Union.

Karl Fogel is a founding partner at Open Tech Strategies.
He is the author of the popular "Producing Open Source
Software" and a founding developer of the Subversion project.
Throughout his career, Karl has advised a wide range of
projects and companies, including Google, Canonical, O'Reilly
Media, and Code for America / Civic Commons. Karl has also
been a board member at the Open Source Initiative, an Open
Internet Tools Project Fellow at the New America Foundation,
and is a member of the Apache Software Foundation.

https://sethschoen.com/
https://opentechstrategies.com/#team
https://opentechstrategies.com/#team
https://opentechstrategies.com/#team

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

